Upper Barataria Basin, LA - Feasibilty Study Settlement - USACE Family of Curves

Upper Barataria Basin Lift Schedule for Alternatives 1, 3, and 5

what is shown and is only developed for

planning purposes.

Upper Barataria Basin Lift Schedule - Alternative 6 Reaches A, B and C

an estimate. Time-Rate Settlement may vary from what is shown and is only developed for planning purposes.

Year

Upper Barataria Basin Lift Schedule - Alternative 6 - Reaches D, E, F, G, H and K

Note: Time-Rate Settlement Calculations are only an estimate. Time-Rate Settlement may vary from what is shown and is only developed for planning purposes.

Year

EL. 15' Upper Barataria Basin Section for Cost Estimation Purposes

EL. 17' Upper Barataria Basin Section for Cost Estimation Purposes

EL. 19' Upper Barataria Basin Section for Cost Estimation Purposes

Alternative 6 - Reaches A, B, C, D, E, F, G, H, and K

Upper Barataria Basin Lift Schedule For Alternative 8 - Highway

Note: Time-Rate Settlement Calculations are only an estimate. Time-Rate Settlement may vary from what is shown and is only developed for planning purposes.

Year

Alternative 8 - Reaches G, H, and I

Alternative 10

Upper Barataria Basin Reaches A,B and C- Lift Schedule

Alternative 10

Upper Barataria Basin Reaches D to F - Lift Schedule

Typical Section used in the cost estimate to compare an alternative with a flood wall to a levee alternative

Typical Section from Appendix 8 of the Conceptual Design Report

Upper Barataria Basin Risk Reducti5on CPRA Proejct 002HP.06 Segment 2 Typical Section Segment 2

Page 216 of 376 of the pdf. Sheet 13 of 71

- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995 AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995, 2003, AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194

EUSTIS ENGINEERING SERVICES, L.L.C.

WWW.EUSTISENG.COM

WWW.EUSTISENG.COM

LAFAYETTE • BATON ROUGE • NEW ORLEANS • GULFPORT

BORING LOCATION PLAN

ST. CHARLES PARISH
MAGNOLIA RIDGE LEVEE PROJECT
REPORT I - EARTHEN LEVEES
ST. CHARLES PARISH, LOUISIANA
ST. CHARLES PARISH PROJECT NO. P080905-6A

DRAWN BY: J.L.S. PLOT DATE: 12
CHECKED BY: S.G.W. JOB NO.: 22557

PLOT DATE: 12 NOV 15 CADD FILE: REPORT I_PLAN.DGN

REPORT I_PLAN.DGN
FIGURE 1 (SHEET 1 OF 3)

Plate 10

- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995 AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995, 2003, AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194

BORING LOCATION PLAN

ST. CHARLES PARISH
MAGNOLIA RIDGE LEVEE PROJECT
REPORT I - EARTHEN LEVEES
ST. CHARLES PARISH, LOUISIANA
ST. CHARLES PARISH PROJECT NO. P080905-6A

LAFAYETTE • BATON ROUGE • NEW ORLEANS • GULFPORT

DRAWN BY: J.L.S. PLOT DATE: 12 NOV 15 CADD FILE: REPORT L PLAN.DGN
CHECKED BY: S.G.W. JOB NO.: 22557 FIGURE 1 (SHEET 2 OF 3)

- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED BETWEEN APRIL 2014 AND JUNE 2015 FOR THIS PROJECT
- DENOTES APPROXIMATE LOCATIONS OF 5-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995 AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194
- DENOTES APPROXIMATE LOCATIONS OF 3-IN. UNDISTURBED SOIL BORINGS DRILLED IN 1995, 2003, AND 2004 UNDER EUSTIS ENGINEERING PROJECT NO. 13194

DRAWN BY: J.L.S. PLOT DATE: 12 NOV 15 CADD FILE:
REPORT L PLAN.DGN
CHECKED BY: S.G.W. JOB NO.: 22557 FIGURE 1 (SHEET 3 OF 3)

Plate 12

EE 22557 Magnolia Ridge
Consolidation Test Sur

Homogeneous CL and CH sedimentary clays of low to moderate sensitivity ($I_p = 20\% - 80\%$): $S = 0.20 + 0.05I_p$, or simply S = 0.22. $m = 0.88(1 - C_s/C_c) \pm 0.06$ SD, or simply m = 0.8. Sedimentary deposits of silts and organic soils (Atterberg limits plot below the A-line, but excluding peats) and clays with shells: S = 0.25, with nominal SD = 0.05. m = 0.88 (1 - C_1/C_2) ± 0.06 SD, or simply m = 0.8.

0.8 = m

 $\frac{c_u}{\sigma'_{w}} = S(OCR)^m$

		Consolidation Test Sur	nmary														m = 0.88 (1 - 6)	C_s/C_c) ± 0.06 SD, or simply	y m = 0.8.		0.25	= S	
No.	Boring	Sample	Boring El. (feet)	Sample Depth (feet)	Sample El. (feet)	USCS	w%	Cc	Cs	eo	CR	RR Based on Consol Test	Theoretical RR=.15*CR	Dry Unit Weight (pcf)	Moist Unit Weight, (pcf)	Approximate P'o (Psf)	Approximate P'o (tsf)	Approximate P'c (tsf)	$OCR = P'_{o}/P'_{o}$	S _u = P'o*S*(P	CVR	C _v (sq.ft/year)	-Remarks Shen test P
1	B12MU	13B	6.0	45.0	-39.0	СН	59.1	0.911	0.202	1.674	0.341	0.076	0.051	63.6	101.2	2005.0	1.00	1.81	1.81	804	45	7.00	591
2	B15MU	8B	1.5	25.0	-23.5	СН	46.3	0.628	0.075	1.674	0.235	0.028	0.035	71.2	104.2	1042.0	0.52	1.15	2.21	491	66	32.85	268
3	B16MU	7B	6.5	21.0	-14.5	СН	66.0	0.968	0.171	1.925	0.331	0.059	0.050	58.5	97.1	960.6	0.48	1.10	2.29	466	73	29.20	320
4	взми	6B	2.0	17.0	-15.0	ОН	200.8	3.279	0.858	5.268	0.523	0.137	0.078	24.4	73.4	856.2	0.43	1.92	4.48	711	18	3.65	1503
5	B4MU	9B	7.5	25,0	-17.5	ОН	79.9	0.989	0.240	2.126	0.316	0.077	0.047	52.9	95.2	1363.0	0.68	1.05	1.54	482	201	14.60	788
6	B6MU	~/ 4C	2.0	10.0	-8.0	CL	36.7	0.264	0.026	1.044	0.129	0.012	0.019	82.5	112.8	546.0	0.27	1.95	7.14	658	365	365.00	306/205
7	B7MU	8C	2.4	23.0	-20.6	СН	58.6	0.807	0.134	1.680	0.301	0.050	0.045	62.9	99.8	1030.0	0.52	1.55	3.01	622	219	36.50	CU=381; UU=755
8	B8MU	6C	1.9	17.0	-15.1	СН	50.4	0.549	0.168	1.602	0.211	0.064	0.032	65.3	98.2	912.2	0.46	1,25	2.74	511	29	14.60	475
9	B10MU	14C	2.5	50.0	-47.5	СН	46.9	0.779	0.170	1.405	0.324	0.071	0.049	71.1	104.4	2181.0	1.09	1.45	1.33	685	32	3.65	679
10	B33.1U	~ 10B 3"x 654	3.0	87.0	-84.0	СН	42.4	0.598	0.234	1.159	0.277	0.108	0.042	78.7	112.1	4205.2	2.10	6.60	3.14	2625	/	40:15	w1561 /1846 (UC
11	B33.1U	10B BAD	3.0	87.5	-84.5	СН	41.7	0.153	0.116	1.142	0.071	0.054	0.011	79.3	112.4	4205.2	2.10	2.08 FAR	0.99	1042	29	1.83	00 - 1561 : 1846 : UL
12	B44.1U	6C	1.0	18.5	-17.5	ОН	59.6	0.749	0.189	1.548	0.294	0.074	0.044	63.7	101.7	985.6	0.49	1.08	2.19	462	40	40.15	1165
13	B44.1U	11C	1.0	38.5	-37.5	СН	53.9	0.558	0.144	1.466	0.226	0.058	0.034	68.8	105.9	1881.0	0.94	1.10	1.17	533	29	0.00	492
14	B44.1U	15C	1.0	54.5	-53.5	СН	66.8	1.103	0.242	1.866	0.385	0.084	0.058	59.7	99.6	2526.5	1.26	1.86	1.47	861	22	730 3,65	1460
15	B45.1U	8C	0.0	32.5	-32.5	СН	68.6	0.908	0.220	1.922	0.311	0.075	0.047	58.1	98.0	1356.0	0.68	0.94	1.39	440	40	3.65	588
16	B45.1U	△ 13C	0.0	52.5	-52.5	СН	65.5	0.806	0.149	1.904	0.278	0.051	0.042	58.9	97.5	2108.0	1.05	0.96 3AD	0.91 BAD	489	NA	1.83	232
24	B35	9	0.0	34.0	-34.0	СН	73.0	0.950		2.023	0.314	0.025	0.047	56.6	97.9	1513.0	0.76	1.10	1.45	510	7.3	3.65	
25	B40	2	0.0	6.0	-6.0	СН	40.6	0.320		1.134	0.150	0.012	0.022	79.6	111.9	301.0	0.15	1.40	9.30	448	18	10.95	
26	B44	5	0.0	15.0	-15.0	СН	56.5	0.570		1.562	0.222	0.012	0.033	66.8	104.5	715.0	0.36	1.30	3.64	502	9	4.75	
27	B47	3B	0.0	9.0	-9.0	СН	41.4	0.380		1.130	0.178	0.050	0.027	79.7	112.7	441.0	0.79	2.66	3.35	1044	26	5.00	
28	B47	10C	0.0	38.0	-38.0	СН	63.7	0.970		1.781	0.349	0.060	0.052	61.5	100.7	1587.0	0.47	1.27	2.68	521	1	4.00	
29	B49	5C	0.0	21.5	-21.5	СН	60.7	0.980		1.679	0.366	0.030	0.055	63.4	101.9	948.0	0.47	1.00	2.11	431	22	3.65	
30	B49	13C	0.0	52.5	-52.5	СН	71.1	1.250		1.980	0.419	0.060	0.063	57.4	98.2	2166.5	1.08	1.75	1.62	795		3.65	
31	B51	2B	0.0	5.0	-5.0	СН	43.5	0.370		1.276	0.163	0.050	0.024	75.2	107.9	245.0	0.12	1.40	11.43	430	44	3.65	
32	B51	8C	0.0	30.0	-30.0	CL	38.4	0.360		1.084	0.173	0.010	0.026	71.3	98.7	1325.0	0.66	1.23	1.86	543	923	146.00	

Gains in Strength from additional loadings were added for this stability analysis

This analysis should only be used for the cost estimate.

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Construction Grade - Entry Exit Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis

This analysis should only be used for the cost estimate.

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

of Engineers

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Low Water Level - Block Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis. This analysis should only be used for the cost estimate.

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps of Engineers

of Engineers

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Still Water Level - Block Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

HAH

US Army Corps
of Engineers.

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Top of Levee - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL17W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps of Engineers

New Orleans District Upper Barataria Basin Stability Analysis for Cost Estimate Alternative 6

Low Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL17W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Still Water Level - Block Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

Hah

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Top of Levee - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL19W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Low Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL19W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

US Army Corps
of Engineers。
New Orleans District
Upper Barataria Basin

Stability Analysis for Cost Estimate
Alternative 6

Still Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL19W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

22557-SCP-Magnolia Ridge Levee Project - Report I - Earthen Levees - Report and Figures. pdf Page 45/49

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: Using Design Shearline for Levee Reach 2 [Soil Boring B-2 and CPT Probe B-7] On page 29/113 of Appendix 4-Geotechnical Investigations Figure 2.2. from the LBLD -Upper Barataria RRP Conceptual Report This design is only for cost estimating purposes. A more detailed design will be completed at a later time

Top of Levee - Entry Exit Slip Surface Louisiana

Stability Analysis for Cost Estimate

US Army Corps of Engineers

New Orleans District

Alternative 6

Upper Barataria Basin

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: Using Design Shearline for Levee Reach 2 [Soil Boring B-2 and CPT Probe B-7] On page 29/113 of Appendix 4-Geotechnical Investigations Figure 2.2. from the LBLD -Upper Barataria RRP Conceptual Report

This design is only for cost estimating purposes. A more detailed design will be File Name: UBBFootPrintMagnolia2007VersionEL21WStrengthGain07232019.gsz completed at a later time.

Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Upper Barataria Basin\Upper Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Low Water Level - Entry Exit Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Note: Using Design Shearline for Levee Reach 2 [Soil Boring B-2 and CPT Probe B-7] On page 29/113 of Appendix 4-Geotechnical Investigations Figure 2.2. from the LBLD -Upper Barataria RRP Conceptual Report

This design is only for cost estimating purposes. A more detailed design will be File Name: UBBFootPrintMagnolia2007VersionEL21WStrengthGain07232019.gsz completed at a later time.

Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Upper Barataria Basin\Upper Footprints\Alt 6 for Cost\Alt 6 Stability Analysis for Cost\

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Still Water Level - Entry Exit Slip Surface Louisiana

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps
of Engineers.

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Top of Levee - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL15W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Hai

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Low Water Level - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL15W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 6

Still Water Level - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL15W07242019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps
of Engineers.

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Top of Levee - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL17W08022019.gsz Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Han

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Low Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL17W08022019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

22557-SCP-Magnolia Ridge Levee Project - Report I - Earthen Levees - Report and Figures. pdf
Page 45/49

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Still Water Level - Block Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL17W08022019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Top of Levee - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL19W08022019.gsz Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Han

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Low Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL19W08022019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Hah

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Still Water Level - Entry Exit Slip Surface Louisiana

File Name: UBBFootPrintMagnolia2007VersionEL19W08022019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps
of Engineers.

New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Top of Levee - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL205W08062019.gsz Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION
SHEAR STRENGTHS AND UNIT WEIGHTS OF
THE SOIL WERE BASED ON THE RESULTS OF
UNDISTURBED BORINGS. SEE
BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

Hai

US Army Corps
of Engineers
New Orleans District
Upper Barataria Basin
Stability Analysis for Cost Estimate
Alternative 8

Low Water Level - Entry Exit Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL205W08062019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\

Gains in Strength from additional loadings were added for this stability analysis

GENERAL NOTES

CLASSIFICATION STRATIFICATION SHEAR STRENGTHS AND UNIT WEIGHTS OF THE SOIL WERE BASED ON THE RESULTS OF UNDISTURBED BORINGS. SEE BORING DATA PLATES.

SHEAR STRENGTHS BETWEEN VERTICALS WERE ASSUMED TO VARY LINEARLY BETWEEN THE VALUES INDICATED FOR THESE LOCATIONS.

US Army Corps of Engineers. New Orleans District

Upper Barataria Basin Stability Analysis for Cost Estimate Alternative 8

Still Water Level - Block Slip Surface Louisiana

Note: This design is only for cost estimating purposes. A more detailed design will be completed at a later time.

File Name: UBBFootPrintMagnolia2007VersionEL205W08062019.gsz
Directory: G:\F&MHOME\Danton\Barataria Basin\Upper Barataria Basin\Project Footprints\